Locating Value Indefiniteness with a Variant of the Kochen-Specker Theorem

Alastair A. Abbott

University of Auckland / École Normale Supérieure, Paris

Barcelona, 6 May 2015

Joint work with C. S. Calude and K. Svozil arXiv:1503.01985

Indeterminism and Quantum Randomness

- A random process or event is one that is unpredictable for any observer.
- Quantum randomness is generally reduced to the indeterminism of quantum measurements.

Born rule

Probability of obtaining 1 when measuring $P_{\phi} = |\phi\rangle\langle\phi|$ on a state $|\psi\rangle$ is $\Pr(\phi \mid \psi) = \langle\psi| P_{\phi}|\psi\rangle$.

Why should we interpret the Born rule as an objective probability distribution?

Indeterminism and Quantum Randomness

- A random process or event is one that is unpredictable for any observer.
- Quantum randomness is generally reduced to the indeterminism of quantum measurements.

Born rule

Probability of obtaining 1 when measuring $P_{\phi} = |\phi\rangle\langle\phi|$ on a state $|\psi\rangle$ is $\Pr(\phi \mid \psi) = \langle\psi| P_{\phi} |\psi\rangle$.

- Why should we interpret the Born rule as an objective probability distribution?
- ▶ Born: "I myself am inclined to give up determinism in the world of atoms."
- Bell's theorem and the Kochen-Specker theorem offer better evidence against determinism

Bell and Kochen-Specker Theorems

Bell's theorem

► The outcomes of certain measurements on certain states cannot be explained by local hidden variable theories.

Kochen-Specker theorem

"Quantum contextuality"

Bell and Kochen-Specker Theorems

Bell's theorem

► The outcomes of certain measurements on certain states cannot be explained by local hidden variable theories.

Kochen-Specker theorem

- "Quantum contextuality"
- ▶ It is impossible to give a noncontextual hidden variable theory for states in $d \ge 3$ Hilbert space.
- State-independent

Bell and Kochen-Specker Theorems

Bell's theorem

► The outcomes of certain measurements on certain states cannot be explained by local hidden variable theories.

Kochen-Specker theorem

- "Quantum contextuality"
- ▶ It is impossible to give a noncontextual hidden variable theory for states in $d \ge 3$ Hilbert space.
- State-independent

We still like to believe that all nontrivial measurements are indeterministic.

Eigenvalue-Eigenstate link

A system in a state $|\psi\rangle$ has a definite property of an observable A if and only if $|\psi\rangle$ is an eigenstate of A.

The Kochen-Specker Theorem

A *context* in \mathbb{C}^n is a set of *n* compatible (commuting) observables.

In $n \ge 3$ Hilbert space there is a finite set of (projection) observables \mathcal{O} such that

the following three are in contradiction:

- Every observable is assigned a definite value of 0 or 1;
- 2. These definite values are noncontextual;
- 3. Exactly one observable in each context is assigned the value 1.

The Kochen-Specker Theorem

A *context* in \mathbb{C}^n is a set of n compatible (commuting) observables.

In $n \ge 3$ Hilbert space there is a finite set of (projection) observables \mathcal{O} such that

the following three are in contradiction:

- 1. Every observable is assigned a definite value of 0 or 1;
- 2. These definite values are noncontextual;
- 3. Exactly one observable in each context is assigned the value 1.

- 1. v is total; i.e., v(P) is defined for all $P \in \mathcal{O}$:
- 2. v is a function of P only;
- 3. For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

The Extent of Value Indefiniteness

There is no value assignment function $v : \mathcal{O} \to \{0,1\}$ with:

- 1. Value definiteness: v is total; i.e., v(P) defined for all $P \in \mathcal{O}$;
- 2. Noncontextuality: v is a function of P only;
- 3. QM: For every context $C \subset \mathcal{O}$: $\sum_{P \in C} v(P) = 1$.

Either, we reject:

- QM: But then we depart from quantum theory;
- NC: Definite values depends on measurement context;
- ▶ VD: Some observables are value indefinite.

A value assignment function represents the measurement of an observable. Hence if we insist that *value definite* observables behave noncontextually, then *some* quantum measurements are indeterministic.

- Rather than assuming this value indefiniteness should apply uniformly, can we prove more formally?
- ▶ Need to localise the VD hypothesis:
 - VD: Every observable is assigned a defined value.

- ► Rather than assuming this value indefiniteness should apply uniformly, can we prove more formally?
- ▶ Need to localise the VD hypothesis:
 - VD: Every observable is assigned a defined value.
 - VD': One observable is assigned a defined value.

- ► Rather than assuming this value indefiniteness should apply uniformly, can we prove more formally?
- ▶ Need to localise the VD hypothesis:
 - VD: Every observable is assigned a defined value.
 - VD': One observable is assigned a defined value.

- If system is in state $|\psi\rangle$, reasonable to expect $v(P_{\psi})=1$.
 - One direction of eigenvalue-eigenstate link.
- ► Intuitively, expect everything outside this 'star' to be value indefinite.

- ► Rather than assuming this value indefiniteness should apply uniformly, can we prove more formally?
- ▶ Need to localise the VD hypothesis:
 - VD: Every observable is assigned a defined value.
 - VD': One observable is assigned a defined value.
 - VD": An observable *P* assigned 1, and a *non-compatible* observable *P'* value definite.
- If system is in state $|\psi\rangle$, reasonable to expect $v(P_{\psi}) = 1$.
 - One direction of eigenvalue-eigenstate link.
- ► Intuitively, expect everything outside this 'star' to be value indefinite.
- ► Need to localise all the assumptions if we wish to go further formally.

Generalising the Formal Framework

- ▶ Consider a value assignment function $v: \mathcal{O} \to \{0,1\}$ as a representation of the system, rather than a HVT
 - A partial function: v(P) undefined if P value indefinite.

Generalising the Formal Framework

- ▶ Consider a value assignment function $v: \mathcal{O} \to \{0,1\}$ as a representation of the system, rather than a HVT
 - A partial function: v(P) undefined if P value indefinite.
- Noncontextuality: If v(P) is value definite, then its value is noncontextual.
 - Value indefinite observables are considered contextual.
- ▶ QM: How to handle condition that for all C, $\sum_{P \in C} v(P) = 1$ if v(P) is undefined?

Generalising the Formal Framework

- ▶ Consider a value assignment function $v: \mathcal{O} \to \{0,1\}$ as a representation of the system, rather than a HVT
 - A partial function: v(P) undefined if P value indefinite.
- Noncontextuality: If v(P) is value definite, then its value is noncontextual.
 - Value indefinite observables are considered contextual.
- ▶ QM: How to handle condition that for all C, $\sum_{P \in C} v(P) = 1$ if v(P) is undefined?

Admissibility of v

A value assignment function v is admissible if for every context $C \subset \mathcal{O}$:

- (a) if there exists a $P \in C$ with v(P) = 1, then v(P') = 0 for all $P' \in C \setminus \{P\}$;
- (b) if there exists a $P \in C$ with v(P') = 0 for all $P' \in C \setminus \{P\}$, then v(P) = 1.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

Admissibility provides a way of deducing the value definiteness of observables.

- Need more careful interlinking of observables to obtain a contradiction.
- ► To prove for all P' not compatible with P we either
 - (a) Need to consider \mathcal{O} as the set off all projectors on \mathbb{C}^n ;
 - (b) Give a procedure to find $\mathcal{O} = \mathcal{O}(P')$ for a given P'.

Localised Value Indefiniteness: A Theorem

Theorem

Let $n \geq 3$. If an observable P on \mathbb{C}^n is assigned the value 1, then no other incompatible observable can be consistently assigned a definite value at all - i.e., is value indefinite.

Localised Value Indefiniteness: A Theorem

Theorem

Let $n \geq 3$ and $|\psi\rangle, |\phi\rangle \in \mathbb{C}^n$ be states such that $0 < |\langle \psi | \phi \rangle| < 1$. Then there is a finite set of observables $\mathcal O$ containing P_ψ and P_ϕ for which there is no admissible value assignment function on $\mathcal O$ such that $v(P_\psi) = 1$ and P_ϕ is value definite.

Localised Value Indefiniteness: A Theorem

Theorem

Let $n \geq 3$ and $|\psi\rangle, |\phi\rangle \in \mathbb{C}^n$ be states such that $0 < |\langle \psi | \phi \rangle| < 1$. Then there is a finite set of observables $\mathcal O$ containing P_ψ and P_ϕ for which there is no admissible value assignment function on $\mathcal O$ such that $v(P_\psi) = 1$ and P_ϕ is value definite.

We prove in 3 steps:

- 1. We first prove the explicit case that $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$
- 2. We prove a reduction for $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$ to the first case.
- 3. We prove a reduction for the last case of $\frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle| < 1$ case.

Explicit Case

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

Explicit Case

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

Assuming $v(P_{\psi}) = v(P_{\phi}) = 1$, we derive a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

Similarly for $v(P_{\psi})=1$, $v(P_{\phi})=0$ we get a contradiction:

The Greechie diagram below is realisable for $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$.

Similarly for $v(P_{\psi})=1$, $v(P_{\phi})=0$ we get a contradiction:

Localised Value Indefiniteness: A Theorem

Theorem

Let $n \geq 3$ and $|\psi\rangle, |\phi\rangle \in \mathbb{C}^n$ be states such that $0 < |\langle \psi | \phi \rangle| < 1$. Then there is a finite set of observables $\mathcal O$ containing P_ψ and P_ϕ for which there is no admissible value assignment function on $\mathcal O$ such that $v(P_\psi) = 1$ and P_ϕ is value definite.

We prove in 3 steps:

- 1. We first prove the explicit case that $|\langle \psi | \phi \rangle| = \frac{1}{\sqrt{2}}$
- 2. We prove a reduction for $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$ to the first case.
- 3. We prove a reduction for the last case of $\frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle| < 1$ case.

First Reduction: Contraction

If $v(P_{\psi}) = v(P_{\phi}) = 1$ and $0 < |\langle \psi | \phi \rangle| < \frac{1}{\sqrt{2}}$, then we can find a $|\phi'\rangle$ with $\langle \psi | \phi' \rangle = \frac{1}{\sqrt{2}}$ and $v(P_{\phi'}) = 1$ under any admissible v.

The above diagram is realisable for $|\langle a|b\rangle|<|\langle a|c\rangle|<1.$

Second Reduction: Expansion

If $v(P_{\psi}) = v(P_{\phi}) = 1$ and $\frac{1}{\sqrt{2}} < |\langle \psi | \phi \rangle| < 1$, then we can find a finite sequence of states $|\psi_1\rangle, |\phi_1\rangle; \cdots, |\psi_n\rangle, |\phi_n\rangle$ such that for all i $v(P_{\psi}^i) = v(P_{\phi}^i) = 1$ and $\langle \psi_n | \phi_n \rangle = \frac{1}{\sqrt{2}}$ under any admissible v.

Completing the Proof

For the reductions we assumed $v(P_{\phi})=1$. If $v(P_{\phi})=0$, we can easily find $|\phi'\rangle$ with $v(P_{\phi'})=1$ and apply the reasoning above.

As a consequence, the set of value indefinite observables has measure 1: almost all observables are value indefinite.

A Physical Interpretation

This result is purely mathematical. How should we interpret it physically?

EPR: "If, without in any way disturbing a system, we can predict with certainty the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity."

Eigenstate value definiteness

If a system is in a state $|\psi\rangle$, then $v(P_{\psi})=1$ for any faithful value assignment function v.

Interpretation

If a system is in a state $|\psi\rangle$, then the result of measuring an observable A is indeterministic unless $|\psi\rangle$ is an eigenstate of A.

Conclusion: Value Indefiniteness and Randomness

We assume *one* direction of the eigenvalue-eigenstate link, but *derive* the other direction.

The Kochen-Specker theorem shows that quantum-mechanics is indeterministic. This theorem shows the *extent* of this indeterminism and tells us precisely which observables are value indefinite.

- Subject to noncontextuality assumption
- Doesn't hold in two-dimensional Hilbert space.

References

- A. A. Abbott, C. S. Calude & K. Svozil. A variant of the Kochen-Specker theorem localising value indefiniteness, arXiv:1503.01985, 2015.
- S. Kochen & E. Specker. *The problem of hidden variables in quantum mechanics*, Journal of Mathematics and Mechanics, 17:59–87, 1967.
- ▶ A. Cabello et al. *Bell-Kochen-Specker Theorem: A proof with* 18 vectors, Phys. Lett. A, 212:183–187, 1996.
- A. A. Abbott, C. S. Calude & K. Svozil. On the unpredictability of individual quantum measurement outcomes, arXiv:1403.2738, 2014.