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Value Indefiniteness and the Kochen-Specker Theorem

Indeterminism and Quantum Randomness
I A random process or event is one that is unpredictable for any

observer.
I Quantum randomness is generally reduced to the

indeterminism of quantum measurements.

Born rule
Probability of obtaining 1 when measuring Pφ = |φ〉〈φ| on a state
|ψ〉 is Pr(φ | ψ) = 〈ψ|Pφ|ψ〉.

I Why should we interpret the Born rule as an objective
probability distribution?

I Born: “I myself am inclined to give up determinism in the
world of atoms.”

I Bell’s theorem and the Kochen-Specker theorem offer better
evidence against determinism
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Value Indefiniteness and the Kochen-Specker Theorem

Bell and Kochen-Specker Theorems
Bell’s theorem

I The outcomes of certain measurements on certain states
cannot be explained by local hidden variable theories.

Kochen-Specker theorem
I “Quantum contextuality”

I It is impossible to give a noncontextual hidden variable theory
for states in d ≥ 3 Hilbert space.

I State-independent

We still like to believe that all nontrivial measurements are
indeterministic.

Eigenvalue-Eigenstate link
A system in a state |ψ〉 has a definite property of an observable A if
and only if |ψ〉 is an eigenstate of A.
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Value Indefiniteness and the Kochen-Specker Theorem

The Kochen-Specker Theorem

A context in Cn is a set of n compatible (commuting) observables.

In n ≥ 3 Hilbert space there is a finite set of (projection)
observables O such that

the following three are in
contradiction:
1. Every observable is assigned

a definite value of 0 or 1;
2. These definite values are

noncontextual;
3. Exactly one observable in

each context is assigned the
value 1.

there is no value assignment
function v : O → {0, 1} with:
1. v is total; i.e., v(P) is

defined for all P ∈ O;
2. v is a function of P only;
3. For every context C ⊂ O:∑

P∈C v(P) = 1.
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Value Indefiniteness and the Kochen-Specker Theorem

The Kochen-Specker Theorem cont.
There is no value assignment function v : O → {0, 1} with:
1. Value definiteness: v is total; i.e., v(P) defined for all P ∈ O;
2. Noncontextuality: v is a function of P only;
3. QM: For every context C ⊂ O:

∑
P∈C v(P) = 1.
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Value Indefiniteness and the Kochen-Specker Theorem

The Extent of Value Indefiniteness
There is no value assignment function v : O → {0, 1} with:
1. Value definiteness: v is total; i.e., v(P) defined for all P ∈ O;
2. Noncontextuality: v is a function of P only;
3. QM: For every context C ⊂ O:

∑
P∈C v(P) = 1.

Either, we reject:
I QM: But then we depart from quantum theory;
I NC: Definite values depends on measurement context;
I VD: Some observables are value indefinite.

A value assignment function represents the measurement of an
observable. Hence if we insist that value definite observables
behave noncontextually, then some quantum measurements are
indeterministic.
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Locating Value Indefiniteness

How Much Value Indefiniteness Is Reasonable?
I Rather than assuming this value indefiniteness should apply

uniformly, can we prove more formally?
I Need to localise the VD hypothesis:

• VD: Every observable is assigned a defined value.

• VD′: One observable is assigned a defined value.
• VD′′: An observable P assigned 1, and a non-compatible

observable P ′ value definite.

I If system is in state |ψ〉, reasonable to
expect v(Pψ) = 1.

• One direction of
eigenvalue-eigenstate link.

I Intuitively, expect everything outside
this ‘star’ to be value indefinite.

I Need to localise all the assumptions if
we wish to go further formally.
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Locating Value Indefiniteness

Generalising the Formal Framework
I Consider a value assignment function v : O → {0, 1} as a

representation of the system, rather than a HVT
• A partial function: v(P) undefined if P value indefinite.

I Noncontextuality: If v(P) is value definite, then its value is
noncontextual.
• Value indefinite observables are considered contextual.

I QM: How to handle condition that for all C ,
∑

P∈C v(P) = 1
if v(P) is undefined?

Admissibility of v
A value assignment function v is admissible if for every context
C ⊂ O:
(a) if there exists a P ∈ C with v(P) = 1, then v(P ′) = 0 for all

P ′ ∈ C \ {P};
(b) if there exists a P ∈ C with v(P ′) = 0 for all P ′ ∈ C \ {P},

then v(P) = 1.
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Locating Value Indefiniteness

Failure of Existing Greechie Diagrams
Admissibility provides a way of deducing the value definiteness of
observables.

Does there exist a set of observables O such that there is no
admissible value assignment function with two non-compatible
observables P,P ′ ∈ O and v(P) = 1 and P ′ value definite?

I Need more careful interlinking
of observables to obtain a
contradiction.

I To prove for all P ′ not
compatible with P we either

(a) Need to consider O as the set
off all projectors on Cn;

(b) Give a procedure to find
O = O(P ′) for a given P ′.

P

P ′
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Locating Value Indefiniteness

Localised Value Indefiniteness: A Theorem

Theorem
Let n ≥ 3. If an observable P on Cn is assigned the value 1, then
no other incompatible observable can be consistently assigned a
definite value at all – i.e., is value indefinite.

We prove in 3 steps:
1. We first prove the explicit case that |〈ψ|φ〉| = 1√

2
.

2. We prove a reduction for 0 < |〈ψ|φ〉| < 1√
2
to the first case.

3. We prove a reduction for the last case of 1√
2
< |〈ψ|φ〉| < 1

case.

Skip proof
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Locating Value Indefiniteness

Explicit Case
The Greechie diagram below is realisable for |〈ψ|φ〉| = 1√

2
.

Assuming v(Pψ) = v(Pφ) = 1, we derive a contradiction:

Pφ

Pψ
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Locating Value Indefiniteness

First Reduction: Contraction

If v(Pψ) = v(Pφ) = 1 and 0 < |〈ψ|φ〉| < 1√
2
, then we can find a

|φ′〉 with 〈ψ|φ′〉 = 1√
2
and v(Pφ′) = 1 under any admissible v .

Pb

Pc

Pa

The above diagram is realisable for |〈a|b〉| < |〈a|c〉| < 1.
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Locating Value Indefiniteness

Second Reduction: Expansion

If v(Pψ) = v(Pφ) = 1 and 1√
2
< |〈ψ|φ〉| < 1, then we can find a

finite sequence of states |ψ1〉, |φ1〉; · · · , |ψn〉, |φn〉 such that for all i
v(P i

ψ) = v(P i
φ) = 1 and 〈ψn|φn〉 = 1√

2
under any admissible v .

P iφ

P i+1
ψ

P iψ

P i+1
φ
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Locating Value Indefiniteness

Completing the Proof
For the reductions we assumed v(Pφ) = 1. If v(Pφ) = 0, we can
easily find |φ′〉 with v(Pφ′) = 1 and apply the reasoning above.

Pφ Pφ′

Pψ

As a consequence, the set of value indefinite observables has
measure 1: almost all observables are value indefinite.
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Locating Value Indefiniteness

A Physical Interpretation

This result is purely mathematical. How should we interpret it
physically?

EPR: “If, without in any way disturbing a system, we can
predict with certainty the value of a physical quantity,
then there exists an element of physical reality
corresponding to this physical quantity.”

Eigenstate value definiteness
If a system is in a state |ψ〉, then v(Pψ) = 1 for any faithful value
assignment function v .

Interpretation
If a system is in a state |ψ〉, then the result of measuring an
observable A is indeterministic unless |ψ〉 is an eigenstate of A.
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Locating Value Indefiniteness

Conclusion: Value Indefiniteness and Randomness

We assume one direction of the eigenvalue-eigenstate link, but
derive the other direction.

The Kochen-Specker theorem shows that quantum-mechanics is
indeterministic. This theorem shows the extent of this
indeterminism and tells us precisely which observables are value
indefinite.

I Subject to noncontextuality
assumption

I Doesn’t hold in
two-dimensional Hilbert
space.
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